
This file contains chapter one of the more than three hundred pages long manual.

Chapter 1 Introduction

1.1 Preface
3D RenderLib for Windows is a 3D graphics dynamic link library (DLL)
designed especially for use in the Microsoft Windows environment.

3D RenderLib supplies over three hundred functions, which can be used to
program 3D graphics applications or to visualize 3D geometric data. 3D
RenderLib contains, for instance functions to render geometric primitives,
change their color or surface characteristics and manage hierarchical data
storage.

Where needed this manual will explain the general principle of the
computer graphics algorithms and techniques used. This manual is not
intended to cover all aspects or algorithms of todays or even of the used
computer graphics techniques. A list of computer graphics literature is
included elsewhere in this manual.

1.1.1 What is a DLL?
A DLL is an executable module containing functions that Windows
applications can call in order to perform useful tasks. DLLs are similar to
run-time libraries. The main difference is that DLLs are linked with the
application at run-time, not when you link the application files using the
linker. DLLs allow several applications to share a single copy of a routine. If
two Windows applications are running at the same time, and both use a
particular DLL function, both share a single copy of the code for that
function.

DLLs are language independent, i.e. every language capable of calling DLL
functions can call 3D RenderLib functions. All that is necessary is an
include file describing the used data-types and an import library.

1.1.2 A General Overview
3D RenderLib currently supports triangle, square and polygon primitives
with vertex normals, surface normals or no surface information. Polylines
are also supported. Furthermore, polygon sets can be specified to create
more complex polygons, e.g. a polygon containing a hole.

Primitives can be rendered in wire-frame, phong-, gouraud-, flat- and non-
shading mode. The actual rendering does not block the system. So the
user can continue with other work while the rendering continues.

The way these primitives will look is changed by attributes. Attributes are
for instance the current fill-color, edge-color or surface-characteristics.

3D RenderLib supports an unlimited number of directional-, point- and
spot-ligth sources. These lamps can be colored.

3D RenderLib creates its own windows, and can do its own window
handling. Each window can contain an unlimited number of viewports. A
viewport can be thought of as a window in a virtual 3D world. What that
viewport 'sees' in that world is projected and visible in the viewport's
screen, which is an area in a window.

3D RenderLib uses abstract data-types to deal in an object-oriented way
with its windows, viewports, lamps, geometric objects and data storage
files.

Internally 3D RenderLib works with 24-bit color. Because 3D RenderLib is
implemented as a Dynamic-link library (DLL), applications can utilize a 24-
bit or a 8-bit graphic-display simply by installing the appropriate version of
the 3D RenderLib DLL on the system, without any need to change or
recompile the application.

1.2 Using 3D RenderLib
Although there are more ways to use functions from a DLL, using an import
library is the most commonly used method. This is called implicit link-time
import. An implicit import is performed by listing the import library for the
DLL on the linker command line for an application.

Because of the high memory requirements of 3D graphics in general, we
recommend to use 3D RenderLib in enhanced mode only.

More information on how to call functions from a DLL should be in the
information supplied by the manufacturer of your programming
environment. The examples on the installation disk also show the general
principle.

1.2.1 The 3D RenderLib Libraries
The 3D RenderLib import library, called 3drender.lib and the actual DLL,
called 3drender.dll, are supplied on the installation disk.

1.2.2 How Windows Locates DLLs
Windows locates a DLL by searching the same directories it searches to
find an application. To be found by Windows, the 3D RenderLib DLL must
be in one of the following directories:

1. The current directory.

2. The Windows directory (the directory containing 'win.com').

3. The Windows system directory (the directory containing 'kernel.exe).

4. Any of the directories listed in the PATH environment variable.

5. Any directory in the list of directories mapped in a network.

Windows searches the directories in the listed order.

1.2.3 Running Multiple Applications
3D RenderLib functions can be called from any Windows application that
imports the 3D RenderLib import library. There is only one copy of the
actual DLL code present in the system, regardless of the number of
applications using 3D RenderLib. All these applications can render, edit
etc. at the same time, all sharing the same DLL.

1.2.4 Window Handling and Behaviour
Since 3D RenderLib creates its own windows and can do its own window
handling, it is also possible to write a Windows program by calling 3D
RenderLib functions only.
The RLib_Wait function was especially created for this purpose. It waits
until the user closes the specified window by selecting 'Close' from its
system menu.

Information and functions are provided to alter or enhance the standard
appearance or behaviour of 3D RenderLib windows.

1.3 Abstract Data-types
3D RenderLib makes use of several abstract data-types. To avoid confusion
we will not call these abstract data-types objects. When the term 'object' is
used we mean an geometric object consisting of one or more primitives
and attributes.

Every abstract data-type is visible to the programmer only through its
identifier. An identifier can be thought of as a handle, referring to a
collection of variables and functions, the actual abstract data-type. The
characteristics of an abstract data-type can only be changed by using, the
especially for this purpose designed, functions.

For instance a display shows it self as a window. When the programmer
wants to alter the window's background color, it should call
RLib_SetDisplayBackGroundColor, specifying the RLib_DISPLAY data-
type, which identifies the meant display.

In this manual we often refer to an identifier as being the abstract data-
type itself. It should be emphasized, that strictly speaking this is not the

case. The programmer has access to an identifier, pin-pointing the actual
abstract data-type, which is allocated in memory when the data-type is
created.

The abstract data-types used by 3D RenderLib are:

1.3.1 The RLib_BASE data-type
The RLib_BASE data-type, which identifies a base, contains information
and resources which are used by all other abstract data-types.
The base is at the top of the hierarchy of abstract data-types. Every
application contains one RLib_BASE data-type. When other abstract data-
types are created it is usually necessary to specify the, already opened,
base. (Except for a viewport which is created by specifying the display it is
created in.)

The first 3D RenderLib function to call is RLib_OpenBase. This will
initialize some buffers and resources used by all 3D RenderLib functions.

The last 3D RenderLib function to call is RLib_CloseBase. This will free the
allocated buffers and resources

1.3.2 The RLib_DISPLAY data-type
The RLib_DISPLAY data-type, which identifies a display, contains
information and resources which are used by RLib_VIEWPORT data-types.
A display will show itself to the user as a window.

A RLib_DISPLAY data-type manages for instance a window and the
window handling routines.

1.3.3 The RLib_VIEWPORT data-type
The RLib_VIEWPORT data-type, which identifies a viewport, contains
information about the virtual 3D world and how and where it should be
seen. It contains a camera through which it looks into the virtual world.
A RLib_VIEWPORT data-type also contains attributes, which determine
how the primitives will look when they are rendered.

Each viewport has a screen. A viewport's screen is that part of a display's
window that was assigned to this viewport.

1.3.4 The RLib_LAMP data-type
The RLib_LAMP data-type, which identifies a lamp, contains information
about a light source. The same data-type is used for all types of lamps.

A RLib_LAMP data-type contains a lamp's color and, depending on the
type of lamp, the lamp's position and direction.

1.3.5 The RLib_SESSION data-type
The RLib_SESSION data-type, which identifies a session, contains
information and resources which are used by RLib_STRUCTURE data-
types.

A RLib_SESSION data-type manages an archive file (session). This session
is used for hierarchical object-oriented data-storage.

1.3.6 The RLib_STRUCTURE data-type
The RLib_STRUCTURE data-type, which identifies a structure, is designed
for hierarchical object-oriented data-storage. A structure can contain
elements. An element can describe a primitive, an attribute or a call to
another structure.

1.3.7 Identifying the Abstract data-types
All abstract data-type can have a unique name. A RLib_SESSION data-
type, which contains a file, has a name by default. It should be specified
when the session is created.

In contrast to all other abstract data-types, a RLib_SESSION has no ID. An
ID can be used in the same way as an abstract data-type's name.

These names and IDs are unique identifiers. It is not possible to have more
then one display, viewport or lamp with the same name or ID. Furthermore
it is not possible to have more then one structure in a session with the
same name or ID.

An abstract data-type's name and ID can be used to identify a specific
abstract data-type.

1.3.8 Live Cycle of the Abstract data-types
Each of the data-types must be created before they can be used, and all
but the RLib_SESSION data-type, can be deleted.

The RLib_DISPLAY, RLib_VIEWPORT and RLib_LAMP data-types are
fully memory based and can only exist during the execution of the
application. Once these data-types are created they can be used. Each of
these data-types can have a unique name and ID. This name and ID can be
used to gain access to a particular data-type, for instance in another part
of the program than where the data-type originally was created.

The RLib_SESSION and RLib_STRUCTURE data-type can 'live' beyond
the application. A RLib_SESSION only has a name, a RLib_STRUCTURE
data-type can have a unique name and ID. This name and ID can be used
to gain access to a particular structure, for instance in another part of the
program, or even in another program than where the structure originally
was created.

1.3.9 Multiple use of Abstract data-types
Since Windows is an event driven environment 3D RenderLib's abstract
data-types can be used by several parts of a program at the same time.

To facilitate this concurrent use of data-types all abstract data-types
contain a counter. This open-counter is used by 3D RenderLib to keep track
of the number of times a data-type is in use, and to make sure no abstract
data-type is closed or deleted by one part of an application while it is still
use in another part.

Special care should be taken when more then one application make use of
the same session or structure. 3D RenderLib currently can not facilitate
that kind of 'global' use of its abstract data-types.

1.4 Function Groups
3D RenderLib contains over three hundred functions. All 3D RenderLib
functions have the 'RLib_' prefix. This prefix is followed by the actual
function name.

The 3D RenderLib functions can be divided in several groups which can be
distinguished by the first word of the actual function name. A few
important groups are:

1.4.1 The 'RLib_Set' and 'RLib_Inq' Function Groups
The 'RLib_Set' functions change run-time data. This data is lost when the
application ends. For instance all data contained in displays, viewports or
lamps are changed using functions from this group.
An example of a function from this group is RLib_SetFillColor, which
alters a viewport's current fill-color.

The 'RLib_Inq' functions retrieve run-time data.

1.4.2 The 'RLib_Put' and 'RLib_Get' Function Groups
The 'RLib_Put' functions change or insert edit-time data. The data is not
lost when the application ends. For instance all elements contained in a
structure are inserted by calling functions from this group.
An example of a function from this group is RLib_PutFillColor, which
inserts a fill-color element in a structure.

The 'RLib_Get' functions retrieve edit-time data.

1.4.3 The 'RLib_Render' Function Group
The 'RLib_Render' functions are used in immediate-rendering. For
instance, RLib_RenderPolygons, renders the specified polygon data in a

viewport, using all current set data.

RLib_RenderStructure is a function from the 'RLib_Render' group which
is of course used in structure rendering.

1.4.4 The 'RLib_Open' and 'RLib_Close' Function
Groups

The 'RLib_Open' and 'RLib_Close' functions are used to gain access to a
particular abstract data-type, for instance in another part of the program
than where the data-type originally was created, and to let 3D RenderLib
know this data-type is currently used.

1.4.5 'RLib_Set' vs. 'RLib_Put' Functions
The functions RLib_SetDisplayID and RLib_PutStructureID illustrate
the difference between the run- and edit-time routines.
Both these functions change the ID of an abstract data-type. A
RLib_DISPLAY data-type is memory based, and can only exist during the
execution of an application. A RLib_STRUCTURE data-type is partially file
based and can 'live' beyond the application. The changed structure-ID is
still the same the next time the structure is opened, while the display-ID is
lost when the application ends.

A RLib_STRUCTURE data-type also contains run-time data. For instance
the current element-index, which is changed by RLib_SetElementIndex.
When an application ends, a structure's element-index is lost. The next
time the structure is opened, its element-index is again set to default.

1.5 Structure vs. Immediate Rendering
3D RenderLib supports two types of rendering; structure rendering and
immediate rendering.

1.5.1 Immediate Rendering
In immediate rendering a primitive is rendered by calling one of the
'RLib_Render' functions. The primitive is rendered in the viewport that is
specified. All the viewport's current attributes, camera position and
direction, projection type and render-mode are used.

For instance, using immediate rendering this is how to render two
polygons, the first red and the second green.
First set the viewport's current fill-color to red by calling
RLib_SetFillColor, specifying red. Then the first polygon is rendered by
calling RLib_RenderPolygons. Again, RLib_SetFillColor is called to
change the viewport's current fill-color to green, and the second polygon is
rendered.

1.5.2 Structure Rendering
In structure rendering a structure is rendered, for instance by calling
RLib_RenderStructure. This structure contains a list of elements. An
element can describe a primitive, an attribute or a call to another
structure.

Rendering a structure will cause 3D RenderLib to traverse the specified
structure. Every element encountered will be interpreted. When an
attribute element is encountered, the specified attribute is changed in the
viewport in which the structure is rendered. When a primitive element is
encountered, that primitive is rendered. When another structure is called,
this structure is opened and then rendered. This latter 'call elements' are
responsible for the hierarchical nature of the data storage.

For instance, using structure rendering this is how to render two polygons,
the first red and the second green.
First create a session and a structure in it. Then insert a fill-color element,
specifying red, by calling RLib_PutFillColor. Next insert a primitive
element, specifying the first polygon, by calling RLib_PutPolygons. Then
the green color is inserted by calling RLib_PutFillColor. As last, the
second polygon is inserted by calling RLib_PutPolygons.
This structure can be rendered by calling RLib_RenderStructure.

1.5.3 When To Use Which Rendering Method
When something simple, which is not worth the trouble of creating a
session and structure for, should be rendered, immediate rendering is the
fastest solution.
Immediate rendering offers a direct rendering interface. This can be very
useful, for instance when an own data-base is used, or for rendering
parametric surface representations like Bezier patches, by approximating
the surface by a polygon mesh.

For applications in which there is significant change in geometric data
between successive renderings, editing a structure does not pay.

The big advantage of structure rendering is the fact that the structure can
be used several times, it can be edited and rendered again. A complex
object, consisting of many primitives can be described by hierarchical
structures and rendered by simply rendering the top-most structure. The
session, containing the structures is available the next time the application
is run.

Therefore, when a complex object is build or rendered, using structures is
the method of choice.

1.5.4 Structure hierarchy
Here is an example of structure hierarchy.
A car can be described by three structures. The structure at the top of the
hierarchy, for instance named 'Car', could call a structure describing the
cars body. Next it could call the structure 'Wheel', describing a wheel, four
times, each time using a different matrix, transforming each wheel to its

desired location. This car can be rendered by simply rendering the 'car'
structure.

Notice that structure hierarchy can also be used to avoid data duplication.
When an object contains a hundred screws, there is only need for one
structure describing a screw. This structure can be called every time a
screw is needed. Each time specifying the right matrix to transform the
screw to its desired location.

1.5.5 Archive files and Display lists
Most graphics systems today offer hierarchical rendering. This is usually
called a display list. Next to this display list an archive file is used for data
storage. 3D RenderLib combines the two.

3D RenderLib's structures are file based optimized display lists. The big
advantage is that data storage is natural. A created display list (structure)
can be used the next time the application is run, or by other applications.
The stored data can be directly rendered.

A disadvantage is of course, the fact that a file based display list can be
slower then a memory based display list. In our experience there is usually
only a minor difference.

The reason for this is disk caching and memory swapping.
A disk-cacher saves data read from the disk in memory. When that data is
read again, the disk-cacher supplies the data directly from memory.
Window's SMARTDrive is such a disk-caching program.
When Windows gets low on memory it compensates by swapping
information from memory to a swap file on the disk (enhanced mode only).

It is easy to see that both memory and file access are depending on the
actual amount of available memory. When there is sufficient memory, file
access will be mostly memory access. When there is insufficient memory
both file and memory access will be mostly disk access.

1.5.6 Speed
Structure rendering is usually slightly slower then immediate rendering.
The reason for this is that structure and immediate rendering use in fact
the same functions but the former has the overhead of retrieving the data.

When a structure is rendered, all encountered elements are interpreted.
For instance when a polygons element is encountered, the data that
describes these polygons is retrieved by calling RLib_GetPolygons. Next
the polygons are rendered by calling RLib_RenderPolygons.
It is easy to see that it is faster to directly call RLib_RenderPolygons as
in immediate rendering.

The difference in rendering speed is usually very minor.
When very small and simple objects, that are easy manageable without
the use of structures, are rendered, immediate rendering is usually faster.
But when more complex objects are rendered using immediate rendering,
the overhead of managing the data and the size of the application needed

to manage the data, undoes its speed advantage.

1.5.7 Function Coherence
The actual function names and arguments used in immediate and
structure rendering are practically the same.

For example:
RLib_RenderPolygons(NumberPoly, NumberIndex, Index, NumberPoints,
Points, Viewport)
RLib_PutPolygons(NumberPoly, NumberIndex, Index, NumberPoints,
Points, Structure)

The first function renders the described polygons, while the second
function inserts an element describing the polygons. When the structure is
rendered, the inserted element will be encountered and the described
polygons will be rendered.

Notice that the function's names only differ in their first word, and the
function's arguments only differ in their last argument, the specified
abstract data-type.

RLib_RenderPolygons is an 'immediate render' function, the viewport in
which the rendering should be performed is specified.

RLib_PutPolygons is a 'structure render' function, the structure in which
the polygons should be inserted is specified. A structure can be rendered
by calling:

RLib_RenderStructure(Structure, Viewport, Matrix)

Now the viewport in which the rendering should be performed is specified.

